Notes.

(a) You may freely use any result proved in class unless you have been asked to prove the same. Use your judgement. All other steps must be justified.

(b) We use \mathbb{N} = natural numbers, \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

(c) There are a total of 108 points in this paper. You will be awarded a maximum of 100 points.

1. [18 Points] Let A be a ring. Consider the natural map between polynomial rings $\phi: A[x, y] \to A[t]$ induced by sending x to t^2 and y to t^3 . Prove that the kernel of ϕ is a principal ideal and find its generator.

2. [18 Points] Let \mathfrak{m} be a maximal ideal in a ring A. Prove that for any integer k > 0, every element of A/\mathfrak{m}^k is either a unit (multiplicatively invertible) or a nilpotent element.

3. [18 Points] Define what it means for a module M over a ring R to be a noetherian module. Give an example of a ring R and a finitely generated module M such that M is not a noetherian module. Prove that for R-modules M_1, M_2 , we have $M_1 \oplus M_2$ is noetherian if and only if M_1 and M_2 are noetherian.

4. [18 Points] Prove that $R = \mathbb{Z}[\sqrt{2}]$ is a principal ideal domain.

5. [18 Points] Let R be a unique factorisation domain. Let a and $b \neq 0$ be elements in R having no common factors. Prove that the kernel of the natural map $R[x] \rightarrow R[a/b]$ induced by sending x to a/b is generated by (bx - a).

6. [18 Points] Classify up to isomorphism, all \mathbb{Z} -modules M, such that M has 10^4 elements and the annihilator of M is $20\mathbb{Z}$.